Microchip expands radiation-tolerant microcontroller portfolio

1 min read

With space exploration experiencing a resurgence with a host of new missions and deployments, designers require electronic components that meet stringent radiation and reliability standards to operate in the harsh environments found in space.

Credit: Microchip

In response, Microchip Technology has announced the SAMD21RT, a radiation-tolerant (RT) Arm Cortex-M0+ based 32-bit microcontroller (MCU) in a 64-pin ceramic and plastic package with 128 KB Flash and 16 KB SRAM.

Designed for space-constrained applications where size and weight are of critical importance, the SAMD21RT is available in a small footprint of 10 mm × 10 mm. Running at up to 48 MHz, the SAMD21RT delivers high-performance processing for harsh environments and the device integrates analogue functions including an Analog-to-Digital Converter (ADC) with up to 20 channels, a Digital-to-Analog Converter (DAC) and analogue comparators.

The device builds on Microchip’s existing family of SAMD21 MCUs, which is widely used in industrial and automotive markets. It is also based on Commercial-Off-The-Shelf (COTS) devices, which significantly simplifies the design process when transitioning to a radiation-tolerant device as the design remains pinout compatible.

Microchip is also able to offer a comprehensive system solution for space applications with many devices that can be designed around the SAMD21RT MCU including FPGAs, power and discrete devices, memory products, communication interfaces and oscillators providing a broad range of options across qualification levels.

To withstand harsh environments including radiation and extreme temperatures, the SAMD21RT can operate in temperatures ranging from −40°C to 125°C and provides a high level of radiation tolerance with a Total Ionizing Dose (TID) capability up to 50 krad and Single Event Latch-up (SEL) immunity up to 78 MeV.cm²/mg.

The low-power SAMD21RT features idle and standby sleep modes and sleepwalking peripherals. Other peripherals include a 12-channel Direct Memory Access Controller (DMAC), a 12-channel event system, various Timer/Counters for Control (TCC), a 32-bit Real Time Counter (RTC), a Watchdog Timer (WDT) and a USB 2.0 interface. Communication options include Serial Communication (SERCOM), I2C, SPI and LIN.