InnovationLab and Heidelberg collaborate on printed and organic sensors

1 min read

InnovationLab, a specialist in printed and organic electronics, is partnering with Heidelberger Druckmaschinen is the mass production of inexpensive printed and organic sensors.

According to market research from IDTechEx, the market for printed sensors, which includes both organic and flexible sensors, will reach $4.5bn by 2030, with a host of new use cases in automotive, healthcare, supply chain logistics and other markets. Meeting that level of demand, however, will require a new approach to the design-to-production process of sensors.

“Our involvement in this production of high-tech sensors opens up the potential for growth in the two- to three-digit million euro range,” said Rainer Hundsdörfer, CEO, Heidelberg. “Our partnership with InnovationLab allows us to offer customers quality of design, reliability, a lower bill of materials, and the highest imaginable volumes."

“The first step to the widespread adoption of printed and organic sensors is good design, which is one of our historic strengths,” said Luat Nguyen, managing director, InnovationLab. “The second is reliable, high-quality volume production. Our collaboration with Heidelberg fulfills both requirements, enabling us to provide a one-stop shop for printed and organic electronics. Now we can give customers a quick transition from design and feasibility studies through market entry, all the way to mass production. This is our unique Lab2Fab concept.”

Until recently, companies have manufactured sensors using conventional semiconductor foundries, which rely on a nine-step process to fabricate each sensor. While well-established, this approach has several downsides: Design-to-production cycles are slow, iteration is costly—as is the per-sensor price—and choice of substrate is limited to rigid materials such as silicon, making such sensors unsuitable for many use cases.

In contrast, printing sensors using roll-to-roll printing methods provides greater choice in functional materials, substrates and deposition methods, offering flexibility of design to accommodate thousands of different applications.

Benefits include

  • A wide range of materials include organic semiconductors and nanomaterials, (transparent) conductive inks, force- and temperature-sensitive materials allow customers to choose among rigid substrates (e.g., glass, ITO-glass, silicon) and flexible substrates (e.g., PET, PEN, TPU, flexible glass, and others)
  • Printing sensors only requires a two-step process, saving time and resources—and significantly reducing bill of materials (BOM) costs
  • Sensors can be printed on flexible, even biodegradable materials, such as textiles—introducing new use cases such as foils of printed sensors that wrap around car batteries to monitor battery health in real-time as well as printed sensors in bandages that monitor the pressure on or moisture of a wound. Printed flexible sensors on food items can both track supply chain conditions like compliance with the cold chain.