Molecular discovery could lead to breakthrough on how data is stored

2 mins read

Scientists at University of Limerick's Bernal Institute have helped discover a molecule that could have a major impact on how data is stored and processed.

Researchers found that a simple metal-organic molecule can go beyond simple binary (0 - OFF, 1 - ON) computing logic and can switch between three distinct, long-lived states.

This is a first demonstration of a ternary 'molecular traffic light' device and could provide a low-energy means of storing and processing unstructured 'big data' required for the Internet of Things (IoT) and Artificial Intelligence (AI).

According to Damien Thompson, Associate Professor in Physics at UL who leads a research team in predictive materials design at the Bernal Institute, found that by using state of the art computer simulations performed on the Irish Centre for High-End Computing supercomputer, that the surprisingly stable third state is possible to make by an unequal sharing of electrons between different sides of the molecule.

The work, published in Nature Nanotechnology, is a result of an international collaboration with National University of Singapore (NUS), Indian Association for the Cultivation of Science (IACS), and Texas A&M University (TAMU).

The device was conceived and developed at NUS by Professor T. Venkatesan and his post-doctoral researcher Dr. Sreetosh Goswami, based on a molecular complex discovered by Prof Sreebrata Goswami of IACS in Kolkata. Prof Stanley Williams, founding director of the Quantum Science Research Laboratory at Hewlett-Packard and now at TAMU, developed the new device paradigm based on the newly discovered electrical properties.

Professor Thompson explained that 'big data' is the Achilles heel of next-generation computing, demanding ever-increasing higher computing density which means, with current binary devices, huge power requirements, impractically complex component manufacture and/or convoluted circuit designs.

"Here, we managed to push way beyond industry roadmaps by finding a ternary resistive memory device with three states that are well-separated from each other in terms of conductance and, just as importantly, stay working away perfectly for weeks on end," explained Professor Thompson.

"The trick to this first commercially viable multi-level computing device is a slightly arcane physical phenomenon called 'charge disproportionation' or symmetry breaking, which we proved using computer simulations," he added.

Professor Thompson outlined that scientists have long noticed that certain materials can "breathe" in an electric or magnetic field, and sometimes the electron cloud around the molecules can lose its symmetry.

"This has remained an academic curiosity until now lacking technological relevance because it has always been associated with a big change in temperature or pressure," he said.

"Whereas here the third asymmetric state is created simply by allowing current to flow through the device and it persists over a broad temperature range (-100 to +100 °C) so it is suitable for most conventional computing as well as future applications emerging from the symbiosis between physics, computing and biology.

"In this new material, ions pulse back and forth between different binding sites on the molecules, which opens up the third state, making it energetically accessible and technologically exploitable," he added.

The research paper has been published online and can be found using the link below.