Princeton researchers have created a key component that could help in developing a communications band that promises to dramatically increase the amount data wireless systems can transmit.

The team at Princeton have developed a programmable surface, called a metasurface, that allows engineers to control and focus transmissions in the terahertz band of the electromagnetic spectrum. Terahertz, a frequency range located between microwaves and infrared light, can transit much more data than current, radio-based wireless systems.

With fifth generation (5G) communications systems offering speeds 10 to 100 times faster than the previous generation, demand for bandwidth is increasing and for engineers the terahertz band presents an opportunity to increase data transmission rates.

However, when using the terahertz band engineers need to overcome some challenges – for example, unlike radio waves, which easily pass through obstructions such as walls, terahertz works best with a relatively clear line of sight for transmission.

The metasurface device, with the ability to control and focus incoming terahertz waves, is able to beam the transmissions in any desired direction. This can not only enable dynamically reconfigurable wireless networks, but also open up new high-resolution sensing and imaging technologies for the next generation of robotics, cyber-physical systems and industrial automation.

Because the metasurface is built using standard silicon chip elements, it is low-cost and can be mass produced for placement on buildings, street signs and other surfaces.

"A terahertz beam would be like a laser pointer, whereas today's radio wave transmitters are like light bulbs that send light everywhere. A programmable metasurface is one that produces any possible fields; it's the ultimate projector " said Kaushik Sengupta, an associate professor of electrical engineering at Princeton and a lead author of a new study in reporting the results. According to Sengupta, the metasurface's low production cost and its programmability means it could be, "a major enhancer for communications and network capabilities."

The design of the metasurface, which features hundreds of programmable Terahertz elements, each less than 100 micrometers (millionths of a meter) in diameter and a mere 3.4 micrometers tall, made of layers of copper and coupled with active electronics that collectively resonate with the structure. This allows adjustments to their geometry at a speed of several billions of times per second. These changes, which are programmable, based on desired application, split a single incoming terahertz beam up into several dynamic, directable terahertz beams that can maintain line-of-sight with receivers.

The Princeton researchers commissioned a silicon chip foundry to fabricate the metasurface as tiles onto standard silicon chips. In this way, the researchers showed that the programmable terahertz metasurface can be configured into low-cost, scalable arrays of tiles.

"The tiles are like Lego blocks and are all programmable," said Sengupta. As a proof of concept, the Princeton researchers tested tile arrays measuring two-by-two with 576 such programmable elements and demonstrated beam control by projecting (invisible) terahertz holograms. These elements are scalable across larger arrays.

Daniel Mittleman, a professor of engineering at Brown University who was not involved in the study, commented that the research represents a significant step toward terahertz communications.

"This new work demonstrates a fascinating approach which, unlike most previous efforts, is scalable into the terahertz range," said Mittleman. "The key takeaway is that we are now getting a handle on practical methods for actively controlling the wave front, beam size, beam direction, and other features of terahertz beams."