comment on this article

UK research team grows laser on silicon substrate

In a development which has potentially wide ranging implications, a UK research team says it has demonstrated the first practical laser that has been grown directly on a silicon substrate.

As data rates continue to climb, passing data between chips using conventional electrical interconnects is proving more and more difficult. The solution is to use light, rather than copper, but it has proved troublesome to integrate this functionality directly onto silicon.

Now, an EPSRC funded group led by Cardiff University and including researchers from UCL and the University of Sheffield, says it has solved the problem and has grown a laser directly onto a silicon substrate. Professor Huiyun Liu, who led the growth activity, said the 1300nm wavelength laser has been shown to operate at temperatures of up to 120°C and for up to 100,000 hours.

Professor Peter Smowton, from Cardiff’s School of Physics and Astronomy, said: “Realising electrically pumped lasers based on silicon substrates is a fundamental step towards silicon photonics.

“The precise outcomes of such a step are impossible to predict in their entirety, but it will clearly transform computing and the digital economy, revolutionise healthcare through patient monitoring and provide a step-change in energy efficiency.

“Our breakthrough is perfectly timed as it forms the basis of one of the major strands of activity in Cardiff University’s Institute for Compound Semiconductors and the University’s joint venture with compound semiconductor specialist IQE.”

Professor Alwyn Seeds, head of the Photonics Group at University College London, added: “The techniques that we have developed permit us to realise the Holy Grail of silicon photonics – an efficient and reliable electrically driven semiconductor laser integrated directly on a silicon substrate. Our future work will be aimed at integrating these lasers with waveguides and drive electronics, leading to a comprehensive technology for the integration of photonics with silicon electronics."

Graham Pitcher

Comment on this article

This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:

Add your comments


Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

5G RF agreement

GlobalFoundries (GF) and Qualcomm Global Trading, a subsidiary of Qualcomm ...

Production challenges

The challenges associated with meeting the needs of customers are now extending ...

Get to market faster

A quick look at using Vicor's PFM and AIM in VIA packaging for your AC to Point ...

Digital consciousness

​Would you consider uploading your brain to the cloud if it meant you could ...

Improving cancer care

Mirada Medical’s imaging technology is helping to accelerate cancer care by ...

Building resilience

James Woodhead talks to New Electronics about the need to build greater ...