comment on this article

Teledyne e2v space processor passes100krad TID testing

Teledyne e2v has announced that the LS1046-Space processor has now passed stringent total ionizing dose (TID) radiation tests, achieving 100krad resilience.

This multi-core device, which features four 64-bit Arm Cortex-A72 processing cores, was able to operate as normal after the TID tests had been undertaken. These results complement those previously obtained in terms of single event latch-up (SEL) and single event upset (SEU) when exposed to heavy-ions up to more than 60MeV.cm²/mg.

Running at operating frequencies of up to 1.8GHz, the LS1046-Space is based on NXP processor technology. It has a built-in 64-bit DDR4 SDRAM memory controller with 8-bit error corrected code (ECC), plus a 2MByte L2 cache shared across its cores. L1 and L2 caches are both ECC-protected, so as to offer a high degree of immunity to data corruption.

This high-reliability processor is supplied in a 780-ball BGA package and comes with a wide range of interfaces embedded - including 10Gbit Ethernet, PCI-Express (PCIe) 3.0, SPI, I2C, multiple UARTs, etc.

Conforming with NASA Level 1 requirements, and typically integrated into space-oriented single board computers (SBCs), it is commonly used in satellite-based imaging related tasks, such as processing/conditioning and image data compression, as well ultra-low latency communications and on-board decision making (leveraging AI algorithms).

As a consequence of this testing, customers will now have the information needed to know how the processing cores incorporated into LS1046-Space device will behave within challenging space settings. Engineers will be able to make better-informed choices about device selection by referring to the detailed test data now available. The TID figures will give them strong assurances about the longevity of these units when deployed into space, while the SEL/SEU heavy ions results provide elevated confidence in ongoing functional integrity.

“As a company, we have been involved in space projects for over three decades, working with the leading agencies and commercial entities in this sector. Our customers are fully aware of the reputation our processor ICs have gained, as well as the performance and extreme reliability benefits that can be brought to their hardware implementations through using them,” said Thomas Guillemain, Marketing & Business Development Manager at Teledyne e2v. “These latest radiation results give a strong validation of the value that our radiation-tolerant, compute-intensive processors offer to space applications, with unquestionable reassurance that they can survive in the most extreme operating conditions.”

Neil Tyler

Comment on this article

This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:

Add your comments


Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

PillarHall test chip

The PillarHall test chip for analysing 3D thin film structures from Chipmetrics ...

Custom MMIC design

Plextek RFI CEO Liam Devlin discusses the technical and commercial ...

Ethical Concerns

Kyle Dent talks New Electronics through some of the ethical issues that have to ...