comment on this article

ST launches Version 3 of NanoEdge AI Studio

STMicroelectronics has announced Version 3 of NanoEdge AI Studio, in what is the first major upgrade of the software tool for machine-learning applications that ST acquired with Cartesiam earlier this year.

The new version of NanoEdge AI Studio comes as the shift of AI capabilities from the cloud to the edge offers manufacturers the potential to fundamentally improve industrial processes, optimise maintenance costs, and deliver innovative functions in equipment that can sense, process data, and act locally to improve latency and information security. Applications include connected devices, household appliances, and industrial automation.

NanoEdge AI Studio looks to simplify the creation of machine learning, anomaly learning, detection and classification on any STM32 microcontroller.

This new release also includes prediction capabilities such as regression and outliers libraries. The tool is intended to make it easier for users to integrate such cutting-edge machine-learning capabilities quickly, easily, and cost-effectively into their equipment. No data-science expertise is needed.

Adding native support for all STM32 development boards, ST has also eliminated the need to write code for its industrial-grade sensors with new high-speed data acquisition and management capabilities. NanoEdge AI Studio software enhances security by using local data storage and processing, instead of transferring to, and processing data in, the cloud.

Key Features of NanoEdge AI Studio V3 include:

  • Completely redesigned user interface.
  • New high-speed data acquisition and management on the STWIN development board making all industrial-grade sensors easily manageable without having to write a single line of code.
  • Improved support for anomaly detection, particularly useful for predictive maintenance to anticipate wear-and-tear phenomena or to better deal with equipment obsolescence.
  • Learn normality directly on STM32 MCUs using small dataset or use new algorithms to train on without ever seeing abnormal patterns before.
  • Added regression algorithms to extrapolate data and predict future data patterns for energy management or forecasting remaining life of equipment.
  • Native support of all STM32 development boards, no configuration required.


Author
Neil Tyler

Comment on this article


This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Protected spaces

Embedded systems developers are looking to container technology to try and ...

The changing face

A year of seismic social and political change 1968 saw anti-Vietnam war ...

Life without GitHub?

The software development platform and code sharing repository GitHub celebrates ...

IoT Everywhere

Mohamed Awad, VP of Arm’s IoT Business, discusses Arm’s vision for its IoT ...

A prolific inventor

Polish software engineer Marta Karczewicz, who has been shortlisted for the ...