comment on this article

Making batteries from waste glass bottles

Nanosilicon anodes for high performance lithium-ion batteries have been created by researchers at the University of California, Riverside's Bourns College of Engineering, using waste glass bottles and a low cost chemical process.

According to the researchers, the batteries could extend the range of electric vehicles and plug-in hybrid electric vehicles, and provide more power with fewer charges to personal electronics like cell phones and laptops.

"We started with a waste product that was headed for the landfill and created batteries that stored more energy, charged faster, and were more stable than commercial coin cell batteries. Hence, we have very promising candidates for next-generation lithium-ion batteries," graduate student Changling Li said.

Silicon anodes are said to store up to 10 times more energy than conventional graphite anodes, but expansion and shrinkage during charge and discharge make them unstable.

Downsizing silicon to the nanoscale has been shown to reduce this problem, and by combining a relatively pure form of silicon dioxide and a low cost chemical reaction, the researchers created lithium-ion half-cell batteries that store almost four times more energy than conventional graphite anodes.

To create the anodes, the team used a three-step process that involved crushing and grinding the glass bottles into a fine white power, a magnesiothermic reduction to transform the silicon dioxide into nanostructured silicon, and coating the silicon nanoparticles with carbon to improve their stability and energy storage properties.

One glass bottle is said to provide enough nanosilicon for hundreds of coin cell batteries or three-five pouch cell batteries.

Author
Peggy Lee

Comment on this article


This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Graphene scaffold

While lithium metal-based batteries are attractive in theory, practical ...

Driving innovation

Oxford University has a reputation not only as an internationally recognised ...

Careless whispers

Chris Edwards explores how timing, EMI and even sound can provide attackers ...

Power management IC

A power management IC, known as the ARG82800, has been launched by Allegro ...

HES conference

The High-End Sensors (HES) international conference will be held between April ...

MicroTech 2018

On April 9-10, 2018 the MicroTech exhibition will be held at the Royal Holloway ...

Get to market faster

A quick look at using Vicor's PFM and AIM in VIA packaging for your AC to Point ...

Tech trends

Last year was a busy one for technology and 2018 is unlikely to be any ...

Mobile slowdown

With just under a week to go before Apple launches its new iPhone the press has ...

Shaping the future

Alexander Everke, the CEO of ams, started his career in the semiconductor ...