comment on this article

Texas team says it has broken antenna symmetry

Researchers at The University of Texas at Austin have designed an antenna that can process incoming and outgoing signals more efficiently and without the need for the separate components commonly used. According to the team, its development could lead to faster, cheaper and clearer telecommunications.

Their breakthrough is the design of an antenna that can break reciprocity – the natural symmetry in radiation that characterises antennas. By breaking reciprocity, the researchers’ antenna can control incoming and outgoing signals independently with large efficiency.

“Our achievement is that we break the symmetry between transmission and reception signals, so we are able to prevent the antenna from having to listen to reflections and echoes that affect the source,” said Professor Andrea Alù. “We show that it is possible to efficiently overcome these constraints using temporally modulated travelling wave antennas.”

The advantage of this development is the possibility of sending out a signal, while keeping out noise and echoes that come back toward the antenna. This is likely to enable faster data rates and improved connections, while requiring less bulky antenna systems.

Conventional antennas are subject to reciprocity, meaning they transmit and receive signals with the same efficiency; if a conventional antenna is a very good emitter of signals in a certain direction, it is also a very good receiver from the same direction. This property is not always beneficial, says the team, because transmitting antennas are prone to absorb surrounding reflections or echoes, reducing the quality of the transmitted signals.

In its experiments, the team fed the antenna with two signals simultaneously: the RF signal they wanted to transmit or receive; and a weak low frequency modulation signal that slowly changes the properties of the antenna as the RF signal travels along it. This modulation breaks the antenna’s inherent symmetry in transmission and reception.

The researchers are now looking into how this concept may be extended to applications such as optics, believing that by pushing these concepts to higher frequencies, it will be possible to break a similar constraint affecting energy harvesting devices such as thermophotovoltaic cells.

Graham Pitcher

Comment on this article

This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:

Add your comments


Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Managing the workflow

Up to 80% of a company’s document information can be contained in different or ...

EEE Conference

The date for the 2017 Electrical and Electronic Equipment and the Environment ...

Get to market faster

A quick look at using Vicor's PFM and AIM in VIA packaging for your AC to Point ...

Betting on the future

Last week, Tesla, the company best known for its electric cars, saw its stock ...

Hitting maturity?

From curved TVs to pop-up presentation screens a new wave of products are ...

A man with a plan

Cypress Semiconductor was formed in 1982 and went public in 1986. Until 2016, ...