23 January 2012

Star Trek Tricorder a reality? T-rays may hold the answer

Following the X Prize Foundation's announcement that it will award $10million to anyone who can develop the Tricorder scanner used in Star Trek, researchers have unveiled a new technique to create Terahertz rays (T-rays) – the radiation technology behind full body security scanners.

According to the scientists, the new T-rays are stronger, more efficient and could be used to make better medical scanning gadgets, as well as potentially paving the way for innovations similar to the Tricorder.

The research is being undertaken by teams from Imperial College London and the Institute of Materials Research and Engineering (IMRE) in Singapore. According to the researchers, they have made T-rays into a much stronger directional beam than was previously thought possible and have produced them at room temperature conditions, enabling future systems to be smaller, easier to operate and much cheaper.

The T-ray scanner and detector, say the scientists, could provide part of the functionality for a portable sensing, computing and data communications device, since the waves are capable of detecting biological phenomena such as increased blood flow around tumours. Future scanners, they believe, could also perform fast wireless data communication to transfer a high volume of information on the measurements it makes.

T-rays are waves in the far infrared part of the electromagnetic spectrum that have a wavelength hundreds of times longer than visible light. Such waves are already used in airport security scanners, prototype medical scanning devices and in spectroscopy systems for materials analysis. As every molecule has a unique signal in the THz range, T-rays can sense molecules such as those present in cancerous tumours and living DNA. They can also be used in the non-destructive testing of semiconductor integrated circuit chips and to detect explosives or drugs in gas pollution monitoring. Currently, T-rays need to be created under very low temperatures with high energy consumption, while existing medical T-ray imaging devices have only low power output power and are very expensive.

In the new technique, the researchers demonstrated that it's possible to produce a strong beam of T-rays by shining light of differing wavelengths on a pair of electrodes – two pointed strips of metal separated by a 100nm gap on top of a semiconductor wafer. The tip to tip nano-sized gap electrode structure enhances the THz field and acts like a nano-antenna that amplifies the THz wave generated. The waves are produced by an interaction between the electromagnetic waves of the light pulses and a powerful current passing between the semiconductor electrodes from the carriers generated in the underlying semiconductor. The scientists are able to tune the wavelength of the T-rays to create a beam that is useable in the scanning technology.

The secret behind the innovation lies in a newly developed nano-antenna that has been integrated into the semiconductor chip. Arrays of the nano-antennas create much stronger THz fields that generate a power output 100 times higher than the power output of commonly used THz sources that have conventional interdigitated antenna structures. A stronger T-ray source renders the T-ray imaging devices more power and higher resolution.

Research co-author, Stefan Maier, Professor in the Department of Physics at Imperial College London, said: "T-rays promise to revolutionise medical scanning to make it faster and more convenient, potentially relieving patients from the inconvenience of complicated diagnostic procedures and the stress of waiting for accurate results. Thanks to modern nanotechnology and nanofabrication, we have made a real breakthrough in the generation of T-rays that takes us a step closer to these new scanning devices. With the introduction of a gap of only 0.1µm into the electrodes, we have been able to make amplified waves at the key wavelength of 1000µm that can be used in such real world applications."

The study, funded under A*STAR's Metamaterials, is published in Nature Photonics.

Chris Shaw

Supporting Information


Imperial College London

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

Do you have any comments about this article?

Add your comments


Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Toshiba starts 15nm flash

Toshiba is to commence 15nm NAND flash production at the end of the month at ...

£2.75m for feasibility studies

The Technology Strategy Board, Invest Northern Ireland and Highlands and ...

Amp works at 50% efficiency

Researchers from the Universities of Bristol and Cardiff have created an ...

Down to the wire

Once the plain old telephone service, the role of the telephone wire continues ...

Smart pump for the heart

Around 160,000 people in the EU require heart transplants every year. About 600 ...

Wearable electronics

Problems with the heart can be relatively common but, because they can present ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Using Linux in medical devices

This whitepaper explores the issues that software developers and medical device ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

High CV X5R MLCC series

AVX has added new capacitance values to its high CV X5R MLCC series for mobile, ...

Modular power supplies

While engineers are increasingly looking to simplify power design, often by ...

Audio receivers from Molex

A new family of balanced armature audio receivers has been introduced by Molex.

Future World Symposium 2014

29th - 30th April 2014, Twickenham Stadium, London

BEEAs 2013

9th October 2014, 8 Northumberland, London

Engineering Materials Live!

22nd-23rd October 2014, Jaguar Exhibition Hall, Ricoh Arena, Coventry, UK

Self-destructing electronics

Researchers at Iowa State University have created transient electronics that ...

MEMS switch for 'true 4G'

General Electric has created a 3GHz RF MEMS switch that can handle up to 5kW of ...

DLP 0.45 WXGA chipset

Learn all about the features and benefits available to developers with the DLP ...

Electronic charge to 800mph

Breaking the land speed record would require a very special blend of latest ...

Flash drives semi technologies

Demand for NAND flash is said to be growing at 45% per year, driven mainly by ...

Cutting the mustard

In the past ten days, three clients have presented their new designs (an ...

Nathan Hill, director, NGI

Research into graphene won Andre Geim and Kostya Novoselov the Nobel prize in ...

Gregg Lowe, Freescale

Freescale's new ceo tells Graham Pitcher that, while he's not 'dancing' yet, ...

Brent Hudson, Sagentia

Sagentia's ceo tells Graham Pitcher how the consulting company is anticipating ...