29 August 2012

Spintronic speed limit breakthrough could enable next gen devices

US researchers have precisely measured a key parameter of electron interactions called non adiabatic spin torque that they say is essential to the development of next generation spintronic devices.

These devices use electron spin to write and read information, but scientists still need to understand how to manipulate spin as a reliable carrier of computer code.

The researchers from the US Department of Energy's Brookhaven National Laboratory say that the precision they achieved can guide the reading and writing of digital information, as well define the upper limit on processing speed.

"In the past, no one was able to measure the spin torque accurately enough for detailed comparisons of experiment and mathematical models," said Brookhaven Lab physicist Yimei Zhu. "By precisely imaging the spin orbits with a dedicated transmission electron microscope at Brookhaven, we advanced a truly fundamental understanding that has immediate implications for electronic devices."

The team applied a range of high frequency electric currents to a patterned film called permalloy, a material 50nm thick designed to contain any generated magnetic field. The trapped electron spins combine and spiral within the permalloy, building into an observable and testable phenomenon called a magnetic vortex core.

"By capturing images of this micrometre effect, we can deduce the precise value of the non adiabatic torque's contribution to the vortex, which plays out on the nanoscale," added Zhu.

Author
Simon Fogg

Supporting Information

Websites
http://www.bnl.gov/world/

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

Do you have any comments about this article?


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Amp works at 50% efficiency

Researchers from the Universities of Bristol and Cardiff have created an ...

Materials breakthrough

A technique to study the interface between materials, developed at the National ...

Quantum logic gate created

Professor Gerhard Rempe, director of the Max Planck Institute of Quantum ...

Down to the wire

Once the plain old telephone service, the role of the telephone wire continues ...

Within touching distance

Graphene is starting to filter onto the market. HEAD claims its tennis racquets ...

Making light work of photonics

Today's world is permeated by electronics, from industry to communications, ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

Altium's Innovation Station

An introduction to the Altium Innovation Station. It includes an overview of ...

IBM tackles 22nm challenges

IBM has announced the semiconductor industry’s first computationally based ...

BEEAs 2013

9th October 2014, 8 Northumberland, London

Self-destructing electronics

Researchers at Iowa State University have created transient electronics that ...

MEMS switch for 'true 4G'

General Electric has created a 3GHz RF MEMS switch that can handle up to 5kW of ...

Smart fabrics developed at NPL

NPL has developed a new method to produce conductive textiles. The technique ...

Electronic charge to 800mph

Breaking the land speed record would require a very special blend of latest ...

Flash drives semi technologies

Demand for NAND flash is said to be growing at 45% per year, driven mainly by ...

Top tech trends for 2013

Bee Thakore, European technical marketing manager for element14, gives an ...

Nathan Hill, director, NGI

Research into graphene won Andre Geim and Kostya Novoselov the Nobel prize in ...

Brent Hudson, Sagentia

Sagentia's ceo tells Graham Pitcher how the consulting company is anticipating ...

Prof Donal Bradley, Imperial

Graham Pitcher talks to a researcher who was 'there at the start' of the ...