24 April 2012

Scientists develop ‘quick and efficient’ way to create single photons

Scientists from Georgia Tech have developed what they say is a quick and efficient way to create single photons for potential use in optical quantum information processing systems.
The technique takes advantage of the properties of atoms with one or more electrons excited to a condition of near ionisation known as the Rydberg state. These atoms – with a principal quantum number greater than 70 – have exaggerated electromagnetic properties and interact strongly with one another.

The researchers say this allows one Rydberg atom to block the formation of additional excited atoms within an area of 10 to 20µm. That Rydberg atom can then be converted to a photon, ensuring that – on average – only one photon is produced from a rubidium cloud containing hundreds of densely packed atoms.
"We are able to convert Rydberg excitations to single photons with substantial efficiency, which allows us to prepare the state we want every time," explained Professor Alex Kuzmich from Georgia Tech's School of Physics. "This new system offers a fertile area for investigating entangled states of atoms, spin waves and photons. We hope this will be a first step toward doing a lot more with this system."
The researchers used lasers to illuminate a dense ensemble of several hundred rubidium 87 atoms that had been laser cooled and confined in an optical lattice. The illumination boosted one atom from the entire cloud into the Rydberg state. "The excited Rydberg atom needs space around it and doesn't allow any other Rydberg atoms to come nearby," said research assistant Yaroslav Dudin. "Our ensemble has a limited volume, so we couldn't fit more than one of these atoms into the space available."
The researchers' next goal may be the development of a quantum gate between light fields. The quantum gating of photons has been proposed and pursued by many research groups, so far unsuccessfully.
"If this can be realised, such quantum gates would allow us to deterministically create complex entangled states of atoms and light, which would add valuable capabilities to the fields of quantum networks and computing," Prof Kuzmich said. "Our works points in this direction."

Author
Graham Pitcher

Supporting Information

Websites
http://www.gatech.edu

Companies
Georgia Institute of Technology

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

Do you have any comments about this article?


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Amp works at 50% efficiency

Researchers from the Universities of Bristol and Cardiff have created an ...

Materials breakthrough

A technique to study the interface between materials, developed at the National ...

Quantum logic gate created

Professor Gerhard Rempe, director of the Max Planck Institute of Quantum ...

Down to the wire

Once the plain old telephone service, the role of the telephone wire continues ...

Within touching distance

Graphene is starting to filter onto the market. HEAD claims its tennis racquets ...

Making light work of photonics

Today's world is permeated by electronics, from industry to communications, ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

Altium's Innovation Station

An introduction to the Altium Innovation Station. It includes an overview of ...

IBM tackles 22nm challenges

IBM has announced the semiconductor industry’s first computationally based ...

BEEAs 2013

9th October 2014, 8 Northumberland, London

Self-destructing electronics

Researchers at Iowa State University have created transient electronics that ...

MEMS switch for 'true 4G'

General Electric has created a 3GHz RF MEMS switch that can handle up to 5kW of ...

Smart fabrics developed at NPL

NPL has developed a new method to produce conductive textiles. The technique ...

Electronic charge to 800mph

Breaking the land speed record would require a very special blend of latest ...

Flash drives semi technologies

Demand for NAND flash is said to be growing at 45% per year, driven mainly by ...

Top tech trends for 2013

Bee Thakore, European technical marketing manager for element14, gives an ...

Nathan Hill, director, NGI

Research into graphene won Andre Geim and Kostya Novoselov the Nobel prize in ...

Brent Hudson, Sagentia

Sagentia's ceo tells Graham Pitcher how the consulting company is anticipating ...

Prof Donal Bradley, Imperial

Graham Pitcher talks to a researcher who was 'there at the start' of the ...