13 July 2012

Researchers use silver nanowires to create stretchable electronics

Stretchable electronics could soon be possible thanks to researchers in the US who have developed elastic conductors made from silver nanowires.

The team from North Carolina State University developed a technique which embeds highly conductive silver nanowires in a polymer that can withstand significant stretching without adversely affecting the material's conductivity.

"This development is very exciting because it could be immediately applied to a broad range of applications," commented Dr Yong Zhu, an assistant professor of mechanical and aerospace engineering. "Our work focuses on high and stable conductivity under a large degree of deformation, complementary to most other work using silver nanowires that are more concerned with flexibility and transparency."

The researchers say that when the polymer is stretched and relaxed, the surface containing nanowires buckles. The result is that the composite is flat on the side that doesn't contain nanowires, but wavy on the side that does.

After the surface has buckled, the material can be stretched up to 50% of its elongation without affecting the conductivity of the nanowires. This is because the buckled shape of the material allows the nanowires to stay in a fixed position relative to each other, even as the polymer is being stretched.

"In addition to having high conductivity and a large stable strain range, the new stretchable conductors show excellent robustness under repeated mechanical loading," Zhu said.

Author
Simon Fogg

Supporting Information

Websites
http://www.ncsu.edu/

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

Do you have any comments about this article?


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Toshiba starts 15nm flash

Toshiba is to commence 15nm NAND flash production at the end of the month at ...

£2.75m for feasibility studies

The Technology Strategy Board, Invest Northern Ireland and Highlands and ...

Amp works at 50% efficiency

Researchers from the Universities of Bristol and Cardiff have created an ...

Down to the wire

Once the plain old telephone service, the role of the telephone wire continues ...

Within touching distance

Graphene is starting to filter onto the market. HEAD claims its tennis racquets ...

Making light work of photonics

Today's world is permeated by electronics, from industry to communications, ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

Altium's Innovation Station

An introduction to the Altium Innovation Station. It includes an overview of ...

IBM tackles 22nm challenges

IBM has announced the semiconductor industry’s first computationally based ...

BEEAs 2013

9th October 2014, 8 Northumberland, London

Self-destructing electronics

Researchers at Iowa State University have created transient electronics that ...

MEMS switch for 'true 4G'

General Electric has created a 3GHz RF MEMS switch that can handle up to 5kW of ...

Smart fabrics developed at NPL

NPL has developed a new method to produce conductive textiles. The technique ...

Electronic charge to 800mph

Breaking the land speed record would require a very special blend of latest ...

Flash drives semi technologies

Demand for NAND flash is said to be growing at 45% per year, driven mainly by ...

Top tech trends for 2013

Bee Thakore, European technical marketing manager for element14, gives an ...

Nathan Hill, director, NGI

Research into graphene won Andre Geim and Kostya Novoselov the Nobel prize in ...

Brent Hudson, Sagentia

Sagentia's ceo tells Graham Pitcher how the consulting company is anticipating ...

Prof Donal Bradley, Imperial

Graham Pitcher talks to a researcher who was 'there at the start' of the ...