comment on this article

Researchers use inner ear 'battery' to power medical implants

Ear powered medical devices on the way?

Researchers in the US have, for the first time, powered an implantable electronic device using an electrical potential - a natural battery - deep in the inner ear.

The team from MIT believes this new type of biological battery could one day power implantable electronics devices without impairing hearing, and even be used to deliver medicines and therapies.

In experiments, the researchers implanted electrodes in the biological batteries in guinea pigs' ears. After the implantation, the guinea pigs were said to respond normally to hearing tests, and the devices were able to wirelessly transmit data about the chemical conditions of the ear to an external receiver.

The chip was equipped with an ultra low power radio transmitter and power conversion circuitry. To reduce its power consumption, the control circuit had to be drastically simplified. Like the radio, however, it still required a higher voltage than the biological battery could provide. Once the control circuit was up and running, it could drive itself; the problem was getting it up and running.

The researchers solved this problem with a one off burst of radio waves. The team implanted electrodes attached to the chip on both sides of the membrane in the biological battery of each guinea pig's ear. "In the very beginning, we need to kick start it," said Anantha Chandrakasan's, from MIT's Microsystems Technology Laboratories. "Once we do that, we can be self sustaining. The control runs off the output."

The researchers see three possible applications for their work: in cochlear implants, diagnostics and implantable hearing aids.

"The fact that you can generate the power for a low voltage from the cochlea itself raises the possibility of using that as a power source to drive a cochlear implant," said Chandrakasan. "Imagine if we were able to measure that voltage in various disease states. There would potentially be a diagnostic algorithm for aberrations in that electrical output."

Chandrakasan concluded: "I'm not ready to say that the present iteration of this technology is ready. But if we could tap into the natural power source of the cochlea, it could potentially be a driver behind the amplification technology of the future."

The work was carried out in collaboration with the Massachusetts Eye and Ear Infirmary and the Harvard-MIT division of Health Sciences and Technology.

Author
Laura Hopperton

Comment on this article


This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Under exposure

Chipmakers are set to break the 10nm barrier as they move from the test-chip ...

Data driven defence

The defence industry is facing stagnating or tightening budgets in many of its ...

EEE Conference

The date for the 2017 Electrical and Electronic Equipment and the Environment ...

Custom MMIC design

Plextek RFI CEO Liam Devlin discusses the technical and commercial ...

The big build

It’s fair to say that politicians, with a few noticeable exceptions, have never ...

Beyond graphene

Since the discovery of graphene in 2004, the fascination around the so called ...

The project begins

Just over a week ago Stephen Doran took up his position as CEO of the Compound ...

A man with a plan

Cypress Semiconductor was formed in 1982 and went public in 1986. Until 2016, ...