08 November 2012

Researchers use inner ear 'battery' to power medical implants

Researchers in the US have, for the first time, powered an implantable electronic device using an electrical potential - a natural battery - deep in the inner ear.

The team from MIT believes this new type of biological battery could one day power implantable electronics devices without impairing hearing, and even be used to deliver medicines and therapies.

In experiments, the researchers implanted electrodes in the biological batteries in guinea pigs' ears. After the implantation, the guinea pigs were said to respond normally to hearing tests, and the devices were able to wirelessly transmit data about the chemical conditions of the ear to an external receiver.

The chip was equipped with an ultra low power radio transmitter and power conversion circuitry. To reduce its power consumption, the control circuit had to be drastically simplified. Like the radio, however, it still required a higher voltage than the biological battery could provide. Once the control circuit was up and running, it could drive itself; the problem was getting it up and running.

The researchers solved this problem with a one off burst of radio waves. The team implanted electrodes attached to the chip on both sides of the membrane in the biological battery of each guinea pig's ear. "In the very beginning, we need to kick start it," said Anantha Chandrakasan's, from MIT's Microsystems Technology Laboratories. "Once we do that, we can be self sustaining. The control runs off the output."

The researchers see three possible applications for their work: in cochlear implants, diagnostics and implantable hearing aids.

"The fact that you can generate the power for a low voltage from the cochlea itself raises the possibility of using that as a power source to drive a cochlear implant," said Chandrakasan. "Imagine if we were able to measure that voltage in various disease states. There would potentially be a diagnostic algorithm for aberrations in that electrical output."

Chandrakasan concluded: "I'm not ready to say that the present iteration of this technology is ready. But if we could tap into the natural power source of the cochlea, it could potentially be a driver behind the amplification technology of the future."

The work was carried out in collaboration with the Massachusetts Eye and Ear Infirmary and the Harvard-MIT division of Health Sciences and Technology.

Author
Laura Hopperton

Supporting Information

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

Do you have any comments about this article?


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Amp works at 50% efficiency

Researchers from the Universities of Bristol and Cardiff have created an ...

X-ray detector on plastic

Researchers from Holst Centre and imec have demonstrated the first ever X-ray ...

Materials breakthrough

A technique to study the interface between materials, developed at the National ...

Down to the wire

Once the plain old telephone service, the role of the telephone wire continues ...

Smart pump for the heart

Around 160,000 people in the EU require heart transplants every year. About 600 ...

Wearable electronics

Problems with the heart can be relatively common but, because they can present ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Using Linux in medical devices

This whitepaper explores the issues that software developers and medical device ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

High CV X5R MLCC series

AVX has added new capacitance values to its high CV X5R MLCC series for mobile, ...

Modular power supplies

While engineers are increasingly looking to simplify power design, often by ...

Audio receivers from Molex

A new family of balanced armature audio receivers has been introduced by Molex.

Future World Symposium 2014

29th - 30th April 2014, Twickenham Stadium, London

BEEAs 2013

9th October 2014, 8 Northumberland, London

Engineering Materials Live!

22nd-23rd October 2014, Jaguar Exhibition Hall, Ricoh Arena, Coventry, UK

Self-destructing electronics

Researchers at Iowa State University have created transient electronics that ...

MEMS switch for 'true 4G'

General Electric has created a 3GHz RF MEMS switch that can handle up to 5kW of ...

DLP 0.45 WXGA chipset

Learn all about the features and benefits available to developers with the DLP ...

Electronic charge to 800mph

Breaking the land speed record would require a very special blend of latest ...

Flash drives semi technologies

Demand for NAND flash is said to be growing at 45% per year, driven mainly by ...

Cutting the mustard

In the past ten days, three clients have presented their new designs (an ...

Nathan Hill, director, NGI

Research into graphene won Andre Geim and Kostya Novoselov the Nobel prize in ...

Gregg Lowe, Freescale

Freescale's new ceo tells Graham Pitcher that, while he's not 'dancing' yet, ...

Brent Hudson, Sagentia

Sagentia's ceo tells Graham Pitcher how the consulting company is anticipating ...