comment on this article

Researchers develop ‘world's most powerful’ nanoscale microwave oscillators

Researchers develop ‘world's most powerful’ nanoscale microwave oscillators

UCLA researchers have created what they claim to be the most powerful high performance nanoscale microwave oscillators in the world, a development that could lead to cheaper, more energy efficient mobile communication devices that deliver better signal quality.

While current oscillators are silicon-based and use the charge of an electron to create microwaves, the UCLA developed oscillators, utilise the spin of an electron, as in the case of magnetism, and are said to carry several orders of magnitude advantages over the oscillators commonly in use today.

The devices grew out of research at the UCLA Henry Samueli School of Engineering and Applied Science, which focused on STT-RAM, or spin-transfer torque magnetoresistive random access memory, which has great potential over other types of memory in terms of both speed and power efficiency.

"We realised that the layered nanoscale structures that make STT-RAM such a great candidate for memory could also be developed for microwave oscillators for communications," said principal investigator Professor Kang Wang.

The structures, called spin-transfer nano-oscillators, or STNOs, are composed of two distinct magnetic layers. One layer has a fixed magnetic polar direction, while the other layer's magnetic direction can be manipulated to gyrate by passing an electric current through it. This allows the structure to produce very precise oscillating microwaves.

"Previously, there had been no demonstration of a spin transfer oscillator with sufficiently high output power and simultaneously good signal quality, which are the two main metrics of an oscillator – hence preventing practical applications," Prof Wang noted. "We have realised both these requirements in a single structure."

Author
Laura Hopperton

Comment on this article


Websites

http://www.ucla.edu/

Companies

UCLA

This material is protected by Findlay Media copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

Enjoy this story? People who read this article also read...

What you think about this article:


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Nanomagnetic chips?

Engineers at the Technische Universität München (TUM) believe that future ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Adding audio

This whitepaper from SiLabs tells you how to add class D audio to embedded ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

Octal logic devices

Diodes has expanded its low voltage CMOS logic family to include thirteen new ...

BEEAs 2013

The sixth British Engineering Excellence Awards (BEEAs) will be held on 9th ...

Better batteries

For much of the last Century, battery technology didn't really need to ...

The tale of the tape

Data storage, at least at the consumer end of the scale, is dominated by flash ...