comment on this article

Researchers develop advanced material for stable, high capacity rechargeable batteries

Researchers from the National University of Singapore (NUS) have successfully designed an organic material that provides enhanced electrical conductivity and energy retention capability for use in battery applications.

The research, led by Professor Loh Kian Ping from the Department of Chemistry at NUS, could pave the way for the development of ultra-stable, high capacity and environmental friendly rechargeable batteries.

Rechargeable batteries are the key energy storage component in large-scale battery systems from electric vehicles to smart renewable energy grids and, in order to meet this growing demand, researchers are looking to develop more sustainable, environmentally friendly methods of producing them – one method being to use organic materials as an electrode in the rechargeable battery.

Organic electrodes leave a lower environment footprint during production and disposal making them a more eco-friendly alternative to inorganic metal oxide electrodes commonly used in rechargeable batteries. The structures of organic electrodes can also be engineered to support high energy storage capabilities. The main challenge in their use, however, is the poor electrical conductivity and stability of organic compounds when used in batteries. The organic materials currently used - such as conductive polymers and organosulfer compounds - also face rapid loss in energy after multiple charges.

To overcome this, Prof Loh and his research team synthesised a novel organic compound 3Q (π-conjugated quinoxaline-based heteroaromatic molecule) that has up to six charge storage sites per molecule in an effort to enhance its conductivity and energy retention.

When hybridised with graphene and used in an ether-based electrolyte, the team observed that the 3Q-based electrode displayed a high electrical conductivity of 395 milliampere hour per gram. It also exhibited a strong energy retention capability after multiple cycles of charge and discharge.

Prof Loh explained, “Our study provides evidence that 3Q, and organic molecules of similar structures, in combination with graphene, are promising candidates for the development of eco-friendly, high capacity rechargeable batteries with long life cycles.”

Neil Tyler

Comment on this article

This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:

Add your comments


Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Beyond the threshold

Given the massive spikes in power consumption incurred by microprocessors and ...

Research excellence

Set up in 1956 Roke Manor Research has over the past 60 years established ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

PWM motor driver IC

Allegro MicroSystems Europe has introduced a new quad DMOS full-bridge driver ...

Get to market faster

A quick look at using Vicor's PFM and AIM in VIA packaging for your AC to Point ...

Mobile slowdown

With just under a week to go before Apple launches its new iPhone the press has ...

The project begins

Recently, Stephen Doran took up his position as CEO of the Compound ...

Peak or bleak?

Ten years ago, the EIGT Report presented the electronics industry with some ...

Terence Watson

Ask Terence Watson about power electronics and you're left in no doubt of his ...