28 February 2012

Researchers create wireless, self propelling medical implant

Tiny implantable devices that can travel through the human body to deliver drugs, perform analyses and even zap blood clots may no longer be the stuff of science fiction thanks to researchers at Stanford University.

A team led by electrical engineer Ada Poon is developing a new class of medical devices that can be implanted or injected into the human body and powered wirelessly using electromagnetic radio waves.

"This means no batteries to wear out and no cables to provide power," says Poon. "Such devices could revolutionise medical technology. Applications include everything from diagnostics to minimally invasive surgeries."

While the idea of implantable medical devices is not new, most of today's implements are challenged by power, namely the size of their batteries, which are large, heavy and must be replaced periodically.

"While we have gotten very good at shrinking electronic and mechanical components of implants, energy storage has lagged in the move to miniaturise," explains Teresa Meng, a professor of electrical engineering and computer science at Stanford. "This hinders us in where we can place implants within the body, but also creates the risk of corrosion or broken wires, not to mention replacing aging batteries."

Poon's devices are different in that they consist of a radio transmitter outside the body sending signals to an independent device inside the body that picks up the signal with an antenna of coiled wire.

The transmitter and the antenna are magnetically coupled such that any change in current flow in the transmitter produces a voltage in the coiled wire - or, more accurately, it induces a voltage. This means that the power is transferred wirelessly. The electricity runs electronics on the device and propels it through the bloodstream, if so desired.

Using new equations, Poon and her team found that high frequency radio waves travel much farther in human tissue than originally thought. "When we extended things to higher frequencies using a simple model of tissue we realised that the optimal frequency for wireless powering is actually around 100GHz," she says, "about 100 times higher than previously thought."

More significantly, however, the revelation meant that antennae inside the body could be 100 times smaller and yet deliver the same power.

Poon has developed two types of self propelled devices. One drives electrical current directly through the fluid to create a directional force that pushes the device forward. This type of device is capable of moving at just over 1/2cm per second. The second type switches current back and forth in a wire loop to produce swishing motion similar to the motion a kayaker makes to paddle upstream.

"There is considerable room for improvement and much work remains before these devices are ready for medical applications," Poon concludes. "But for the first time in decades the possibility seems closer than ever."

Author
Laura Hopperton

Supporting Information

Websites
http://www.stanford.edu/

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

Do you have any comments about this article?


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

X-ray detector on plastic

Researchers from Holst Centre and imec have demonstrated the first ever X-ray ...

Sensor market back on track

Emerging markets such as the Internet of Things, wearable electronics and the ...

Electronics dissolve on cue

Researchers at Iowa State University are the latest to shift their focus to the ...

Smart pump for the heart

Around 160,000 people in the EU require heart transplants every year. About 600 ...

Wearable electronics

Problems with the heart can be relatively common but, because they can present ...

Zeno robot smiles back

The autistic spectrum is sometimes, mistakenly, thought of as a gauge on which ...

Using Linux in medical devices

This whitepaper explores the issues that software developers and medical device ...

Adapting to the extremes of rugged design

Ruggedisation and reliability are key requirements for a wide range of embedded ...

The real solution to fake parts

The high tech supply chain is more vulnerable to counterfeit components than ...

High CV X5R MLCC series

AVX has added new capacitance values to its high CV X5R MLCC series for mobile, ...

Modular power supplies

While engineers are increasingly looking to simplify power design, often by ...

Audio receivers from Molex

A new family of balanced armature audio receivers has been introduced by Molex.

Future World Symposium 2014

29th - 30th April 2014, Twickenham Stadium, London

BEEAs 2013

9th October 2014, 8 Northumberland, London

Engineering Materials Live!

22nd-23rd October 2014, Jaguar Exhibition Hall, Ricoh Arena, Coventry, UK

Self-destructing electronics

Researchers at Iowa State University have created transient electronics that ...

DLP 0.45 WXGA chipset

Learn all about the features and benefits available to developers with the DLP ...

Electronics Design Show 2013

Take a look at some of the highlights from the 2013 Electronics Design Show and ...

Cutting the mustard

In the past ten days, three clients have presented their new designs (an ...

Bionic lenses and rabbits

A Terminator style bionic contact lens has been developed by researchers in a ...

Bullish optoelectronic market

When New Electronics reported the growth of the optoelectronic market in June ...

Gregg Lowe, Freescale

Freescale's new ceo tells Graham Pitcher that, while he's not 'dancing' yet, ...

Rick Clemmer, ceo, NXP

Rick Clemmer believes high performance mixed signal is just one of the sectors ...

Henri Richard, Freescale

Freescale's chief sales and marketing officer tells Graham Pitcher that he's ...