comment on this article

Research points to more durable mobile phones and power lines

Researchers from Binghamton University, State University of New York have developed a way to make cell phones and power lines more durable.

Assistant Professor of Mechanical Engineering Sherry Towfighian and graduate student Mark Pallay have created a microelectromechanical system (MEMS) that uses electrostatic levitation to provide a more robust system.

"All mobile phones use MEMS switches for wireless communication, but traditionally there are just two electrodes," said Towfighian. "Those switches open and close numerous times during just one hour, but their current lifespan is limited by the two-electrode system."

When the two electrodes come into contact the surface of the bottom electrode can become damaged, resulting in a MEMS switch that has to be discarded and replaced. Researchers have tried to avoid the damage by adding dimples or landing pads to the electrodes to reduce the contact area when the electrodes collide, but Towfighian explained that this only delays the eventual breakdown of the material.

She wanted to create a system that avoids the damage altogether so, instead of following the two-electrode model, she designed a MEMS switch with three electrodes on the bottom and one electrode parallel to the others. The two bottom electrodes on the right and left side are charged while the middle and top electrodes are grounded.

"This type of MEMS switch is normally closed, but the side electrodes provide a strong upward force that can overcome the forces between the two middle electrodes and open the switch," explained Towfighian. This force, called electrostatic levitation, is currently not available with the two-electrode system. The ability to generate this force prevents permanent damage of the device after continuous use and enables a reliable bi-directional switch.

"For mobile phones, this design means longer life and fewer component replacements," said Towfighian. "For power lines, this type of MEMS switch would be useful when voltage goes beyond a limit and we want to open the switch. The design allows us to have more reliable switches to monitor unusual spikes in voltage, like those caused by an earthquake, that can cause danger to public safety."

Author
Neil Tyler

Comment on this article


This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Fault detector

A tool that is able to spot defects or unwanted features much earlier in the ...

Definition in demand

Consumer interest in 4K continues to increase and by the end of 2018 4K TV ...

Managing your IPR

It’s essential that companies consider managing their intellectual property ...

Where next in 2019?

From the first autonomous vehicles to 5G and the realisation of mobile AR ...

Dual-Radio dev kit

By supporting concurrent communication over Bluetooth Low Energy (BLE) and ...

Smart Home Expo

The Smart Home Expo, which focuses on the future of smart technologies, ...

Get to market faster

A quick look at using Vicor's PFM and AIM in VIA packaging for your AC to Point ...

Storm clouds gather

The latest quarterly report from the EEF, the manufacturers’ organisation, ...

Piezoelectric haptics

Boréas Technologies’ CEO, Simon Chaput, talks to Neil Tyler about the company’s ...

Teach them to fish

Last year was dubbed the “worst ever” by the Online Trust Alliance for data ...