19 March 2012

Piezoelectric graphene opens new possibilities in nanotechnology

Researchers have described an innovative method of engineering piezoelectrics into graphene, enabling the manipulation of electronics at the nanoscale for the first time.

Evan Reed and Mitchell Ong from Stanford School of Engineering, have discovered that the created physical deformations proportionally vary with the applied electrical field, making the material modify its shape in predictable ways. The research, published in ACS Nano, paves the way for piezoelectric graphene to offer an unprecedented degree of control over optical, electrical and mechanical properties for applications such as nanoscale transistors and touchscreens.

In order to measure the piezoelectric effect, the engineers used an advanced modelling application to simulate the doping process of graphene. They simulated graphene doped with fluorine, potassium, hydrogen, lithium and combinations of fluorine/lithium and fluorine/hydrogen on either side of the graphene lattice. This enabled the graphene to retain its piezoelectric effect by modifying the perfect physical symmetry of the material. Unusual piezoelectric levels of dope graphene were reported, with values equivalent to that of conventional 3D materials. The piezoelectric effect was fine tuned by selectively depositing atoms in designated sections of graphene – a process called pattern doping. Since the piezoelectricity enables strategic control over the deformation of the nanomaterial by an electric field, it is termed as designer piezoelectricity by the engineers.

Based on the positive results from the fabrication of piezoelectric graphene, the engineers hope to extend the technique to other nanomaterials, such as nanotubes, for applications including electronics, photonics, high frequency acoustics, chemical sensing and energy harvesting.

Author
Chris Shaw

Supporting Information

Websites
http://engineering.stanford.edu

Companies
Findlay Media Ltd

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

Do you have any comments about this article?


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Amp works at 50% efficiency

Researchers from the Universities of Bristol and Cardiff have created an ...

Materials breakthrough

A technique to study the interface between materials, developed at the National ...

Quantum logic gate created

Professor Gerhard Rempe, director of the Max Planck Institute of Quantum ...

Down to the wire

Once the plain old telephone service, the role of the telephone wire continues ...

Within touching distance

Graphene is starting to filter onto the market. HEAD claims its tennis racquets ...

Making light work of photonics

Today's world is permeated by electronics, from industry to communications, ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

Transparent Electronics Market

Emerging market opportunity analyst, NanoMarkets, believes that three major ...

Embedded World: Avnet Memec

Avnet Memec has announced it will be launching a new energy harvesting ...

Junction box from TE

TE Connectivity has released a new low profile junction box for BIPV ...

LDOs minimise board space

ON Semiconductor has announced the introduction of five small package, low ...

BEEAs 2013

9th October 2014, 8 Northumberland, London

Self-destructing electronics

Researchers at Iowa State University have created transient electronics that ...

MEMS switch for 'true 4G'

General Electric has created a 3GHz RF MEMS switch that can handle up to 5kW of ...

Smart fabrics developed at NPL

NPL has developed a new method to produce conductive textiles. The technique ...

Electronic charge to 800mph

Breaking the land speed record would require a very special blend of latest ...

Flash drives semi technologies

Demand for NAND flash is said to be growing at 45% per year, driven mainly by ...

Top tech trends for 2013

Bee Thakore, European technical marketing manager for element14, gives an ...

Nathan Hill, director, NGI

Research into graphene won Andre Geim and Kostya Novoselov the Nobel prize in ...

Brent Hudson, Sagentia

Sagentia's ceo tells Graham Pitcher how the consulting company is anticipating ...

Prof Donal Bradley, Imperial

Graham Pitcher talks to a researcher who was 'there at the start' of the ...