comment on this article

Nanowire based sensors offer improved detection of volatile organic compounds

A consortium of international researchers has successfully developed nano sized sensors that can detect volatile organic compounds.

The physicists claim the sensors could offer several advantages over today's commercial gas sensors, including low power room temperature operation and the ability to detect one or several compounds over a range of concentrations.

In collaboration with George Mason University and the University of Maryland, researchers at the National Institute of Standards and Technology (NIST) developed a proof of concept for a gas sensor made of a single nanowire and metal oxide nanoclusters. These were chosen to react to a specific organic compound.

The sensors were built using the same fabrication processes used for silicon computer chips, but on a much smaller scale. Despite their microscopic size, the nanowires and titanium dioxide nanoclusters had a high surface to volume ratio that made them extremely sensitive.

"The electrical current flowing through our nanosensors was in the microamps range, while traditional sensors require milliamps," explained NIST's Abhishek Motayed. "This meant we were sensing with a lot less power and energy. The nanosensors also offered greater reliability and smaller size. They're so small that you can put them anywhere."

While the team's current experimental sensors are tuned to detect benzene as well as the similar volatile organic compounds toluene, ethylbenzene and xylene, its goal now is to build a device that includes an array of nanowires and various metal oxide nanoclusters for analysing mixtures of compounds.

The researchers also plan to collaborate with other NIST teams to combine their ultraviolet light approach with heat induced nanowire sensing technologies.

Author
Laura Hopperton

Comment on this article


Websites

http://www.nist.gov/

Companies

NIST

This material is protected by Findlay Media copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

Enjoy this story? People who read this article also read...

What you think about this article:


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

Servo inclinometers

Sherborne Sensors has unveiled a range of rugged, high precision inclinometers ...

BEEAs 2013

The sixth British Engineering Excellence Awards (BEEAs) will be held on 9th ...

Better batteries

For much of the last Century, battery technology didn't really need to ...

The tale of the tape

Data storage, at least at the consumer end of the scale, is dominated by flash ...