23 March 2012

Could innovative research enable better organic electronics?

Berkeley Lab Researchers have provided the first experimental determination of the pathways by which electrical charge is transported from molecule to molecule in an organic thin film.

The research paves the way for superior new organic electronic devices and also reveals how such organic films can be chemically modified to improve conductance.

"We have shown that when the molecules in organic thin films are aligned in particular directions, there is much better conductance," said Miquel Salmeron, a leading authority on nanoscale surface imaging who directs Berkeley Lab's Materials Sciences Division and who led the study. "Chemists already know how to fabricate organic thin films in a way that can achieve such an alignment, which means they should be able to use the information provided by our methodology to determine the molecular alignment and its role on charge transport across and along the molecules. This will help improve the performances of future organic electronic devices."

Salmeron and Shaul Aloni, also of the Materials Sciences Division, are the corresponding authors of a paper in the journal NanoLetters.

Organic electronics, also known as plastic or polymer electronics, are devices that utilise carbon based molecules as conductors rather than metals or semiconductors. They are prized for their low costs, light weight and rubbery flexibility. Organic electronics are also expected to play a big role in molecular computing, but to date their use has been hampered by low electrical conductance in comparison to metals and semiconductors.

"Chemists and engineers have been using their intuition and trial and error testing to make progress in the field but at some point you hit a wall unless you understand what is going on at the molecular level, for example, how electrons or holes flow through or across molecules, how the charge transport depends on the structure of the organic layers and the orientation of the molecules, and how the charge transport responds to mechanical forces and chemical inputs," Salmeron noted. "With our experimental results, we have shown that we can now provide answers for these questions."

In this study, Salmeron and his colleagues used electron diffraction patterns to map the crystal structures of molecular films made from monolayers of short versions of commonly used polymers containing long chains of thiophene units. They focused specifically on pentathiophene butyric acid (5TBA) and two of its derivatives (D5TBA and DH5TBA) that were induced to self assemble on various electron transparent substrates. Pentathiophenes – molecules containing a ring of four carbon and one sulfur atoms – are members of a well studied and promising family of organic semiconductors.

According to Aloni, obtaining structural crystallographic maps of monolayer organic films using electron beams posed a major challenge.

"These organic molecules are extremely sensitive to high energy electrons," he said. "When you shoot a beam of high energy electrons through the film it immediately affects the molecules. Within few seconds we no longer see the signature intermolecular alignment of the diffraction pattern. Despite this, when applied correctly, electron microscopy becomes essential tool that can provide unique information on organic samples."

Salmeron, Aloni and their colleagues overcame the challenge through the combination of a unique strategy they developed and a transmission electron microscope at the Molecular Foundry's Imaging and Manipulation of Nanostructures Facility. Electron diffraction patterns were collected as a parallel electron beam was scanned over the film, then analysed by computer to generate structural crystallographic maps.

"These maps contain uncompromised information of the size, symmetry and orientation of the unit cell, the orientation and structure of the domains, the degree of crystallinity, and any variations on the micrometer scale," said first author Altoe. "Such data are crucial to understanding the structure and electrical transport properties of the organic films, and allow us to track small changes driven by chemical modifications of the support films."

In their paper, the authors acknowledge that to gain structural information they had to sacrifice some resolution.

"The achievable resolution of the structural map is a compromise between sample radiation hardness, detector sensitivity and noise, and data acquisition rate," Salmeron said. "To keep the dose of high energy electrons at a level the monolayer film could support and still be able to collect valuable information about its structure, we had to spread the beam to a 90nm diameter. However a fast and direct control of the beam position combined with the use of fast and ultrasensitive detectors should allow for the use of smaller beams with a higher electron flux, resulting in a better than 10nm resolution."

While the combination of organic molecular films and substrates in this study conduct electrical current via electron holes (positively charged energy spaces), Salmeron and his colleagues say their structural mapping can also be applied to materials whose conductance is electron based. "We expect our methodology to have widespread applications in materials research," Salmeron said.

This research was supported by the DOE Office of Science.

Author
Chris Shaw

Supporting Information

Websites
http://www.lbl.gov/

Companies
Findlay Media Ltd

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

Do you have any comments about this article?


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Amp works at 50% efficiency

Researchers from the Universities of Bristol and Cardiff have created an ...

Materials breakthrough

A technique to study the interface between materials, developed at the National ...

Quantum logic gate created

Professor Gerhard Rempe, director of the Max Planck Institute of Quantum ...

Down to the wire

Once the plain old telephone service, the role of the telephone wire continues ...

Within touching distance

Graphene is starting to filter onto the market. HEAD claims its tennis racquets ...

Making light work of photonics

Today's world is permeated by electronics, from industry to communications, ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

Transparent Electronics Market

Emerging market opportunity analyst, NanoMarkets, believes that three major ...

Embedded World: Avnet Memec

Avnet Memec has announced it will be launching a new energy harvesting ...

Junction box from TE

TE Connectivity has released a new low profile junction box for BIPV ...

LDOs minimise board space

ON Semiconductor has announced the introduction of five small package, low ...

BEEAs 2013

9th October 2014, 8 Northumberland, London

Self-destructing electronics

Researchers at Iowa State University have created transient electronics that ...

MEMS switch for 'true 4G'

General Electric has created a 3GHz RF MEMS switch that can handle up to 5kW of ...

Smart fabrics developed at NPL

NPL has developed a new method to produce conductive textiles. The technique ...

Electronic charge to 800mph

Breaking the land speed record would require a very special blend of latest ...

Flash drives semi technologies

Demand for NAND flash is said to be growing at 45% per year, driven mainly by ...

Top tech trends for 2013

Bee Thakore, European technical marketing manager for element14, gives an ...

Nathan Hill, director, NGI

Research into graphene won Andre Geim and Kostya Novoselov the Nobel prize in ...

Brent Hudson, Sagentia

Sagentia's ceo tells Graham Pitcher how the consulting company is anticipating ...

Prof Donal Bradley, Imperial

Graham Pitcher talks to a researcher who was 'there at the start' of the ...