comment on this article

High-power thermoelectric generator utilises thermal difference of only 5°c

Credit: Waseda University

A silicon-nanowire thermoelectric generator has been developed by a team of researchers from Waseda University, Osaka University, and Shizuoka University.

According to the Japanese researchers, this experimentally demonstrated a high-power density of 12 microwatts per 1cm2, enough to drive sensors or realise intermittent wireless communication, at a small thermal difference of only 5ºC.

Silicon-based thermoelectric generators conventionally employed long, silicon nanowires of about 10-100nm, which were suspended on a cavity to cut off the bypass of the heat current and secure the temperature difference across the silicon nanowires. However, the cavity structure weakened the mechanical strength of the devices and increased the fabrication cost. The team says their generator has overcome this issue.

"Because our generator uses the same technology to manufacture semiconductor integrated circuits, its processing cost could be largely cut through mass production," says Professor Takanobu Watanabe of Waseda University. “Also, it could open up a pathway to various, autonomously-driven IoT devices utilising environmental and body heats. For instance, it may be possible to charge your smartwatch during your morning jog someday."

The researchers say their thermoelectric generator lost the cavity structure but instead shortened the silicon nanowires to 0.25nm, since simulations showed that the thermoelectric performance improved by minimising the device.

Conventional thermoelectric generator (left) and newly developed thermoelectric generator (right). Credit: Waseda University

Prof Watanabe explains that despite its new structure, the thermoelectric generator demonstrated the same power density as the conventional devices. He adds that the thermal resistance was suppressed, and the power density multiplied by ten times by thinning the generator's silicon substrate from the conventional 750nm to 50nm with backside grinding.

Though the research team will need to improve the quality of the generator for stationary power generation in various conditions, Prof Watanabe hopes that the results achieved in this study will serve to support power technology in the IoT-based society.

Author
Bethan Grylls

Comment on this article


This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

On-chip optical link

For the first time, researchers of the University of Twente (UT) succeeded in ...

EV battery project

The Centre for Process Innovation (CPI) is working alongside LiNa Energy and ...

Definition in demand

Consumer interest in 4K continues to increase and by the end of 2018 4K TV ...

Where next in 2019?

From the first autonomous vehicles to 5G and the realisation of mobile AR ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Dual-Radio dev kit

By supporting concurrent communication over Bluetooth Low Energy (BLE) and ...

Smart Home Expo

The Smart Home Expo, which focuses on the future of smart technologies, ...

Get to market faster

A quick look at using Vicor's PFM and AIM in VIA packaging for your AC to Point ...

A racing certainty

AI has shaken the automotive industry to its core, inspiring a revolution. ...

The changing face

A year of seismic social and political change 1968 saw anti-Vietnam war ...

Piezoelectric haptics

Boréas Technologies’ CEO, Simon Chaput, talks to Neil Tyler about the company’s ...

Teach them to fish

Last year was dubbed the “worst ever” by the Online Trust Alliance for data ...