comment on this article

GaN’s wear resistance offers new application possibilities

Lehigh engineers have reported a new property for Gallium nitride (GaN): Its wear resistance approaches that of diamonds and could open up applications in touch screens, space vehicles and radio-frequency microelectromechanical systems – all of which require high speed, high-vibration technology.

To determine the evolution of wear with GaN, the group subjected GaN to stresses by running slide tests in which the slide distance and the corresponding number of cycles were varied. According to the group, when performing wear measurements of unknown materials, they typically slide for 1000 cycles. In this case, they had to increase to 30,000 reciprocating cycles for the wear scars to be measurable. According to the researchers, this range in wear resistance is caused by factors, including environment, crystallographic direction and humidity.

"The wear resistance of GaN," said Nelson Tansu, director of the Center for Photonics and Nanoelectronics, "gives us the opportunity to replace the multiple layers in a typical semiconductor device with one layer made of a material that has excellent optical and electrical properties and is wear-resistant as well.

"Using GaN, you can build a device in a platform without multiple layers of technologies. You can integrate electronics, light sensors and light emitters and still have a mechanically robust device. This will open up a paradigm for designing devices. And because GaN can be made thin and strong, it will accelerate the move to flexible electronics."

In addition to its good wear performance, GaN also has good radiation hardness, which is an important property for the solar cells that power space vehicles. In outer space, these solar cells encounter large quantities of cosmic dust, along with x-rays and gamma rays, and therefore require a wear-resistant coating, which needs to be compatible with the cell's electronic circuitry. GaN provides the necessary hardness without introducing compatibility issues with the circuitry.

Author
Peggy Lee

Comment on this article


This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Graphene scaffold

While lithium metal-based batteries are attractive in theory, practical ...

Driving innovation

Oxford University has a reputation not only as an internationally recognised ...

Careless whispers

Chris Edwards explores how timing, EMI and even sound can provide attackers ...

HES conference

The High-End Sensors (HES) international conference will be held between April ...

MicroTech 2018

On April 9-10, 2018 the MicroTech exhibition will be held at the Royal Holloway ...

Get to market faster

A quick look at using Vicor's PFM and AIM in VIA packaging for your AC to Point ...

Tech trends

Last year was a busy one for technology and 2018 is unlikely to be any ...

Shaping the future

Alexander Everke, the CEO of ams, started his career in the semiconductor ...

The project begins

Recently, Stephen Doran took up his position as CEO of the Compound ...