comment on this article

Flexible, high-performance solar cells could become portable power sources

Thin and rigid silicon segments that are wired through interdigitated metal contacts are said to produce flexible, high-performance solar cells.

A strategy, developed by KLAST, that uses a screen-printed aluminium circuit to make silicon solar cells flexible could enable them to become portable power sources.

Demand for wearable and implantable devices, foldable displays and vehicle-integrated solar panels are among some of the technology that could benefit, KLAST says.

Crystalline silicon is an appealing material for the development of industrial solar cells because of its reliable and consistent photovoltaic properties. However, its rigidity and weight have raised challenges when it comes for application in flexible electronics.

KLAST says that previous attempts made to enhance the material’s flexibility with thin films, whilst maintaining device performance, have fallen short.

Solar cells are said to have shown a drop in performance for films thinner than 250 micrometers. "At this thickness, one cannot achieve flexible silicon solar cells," says team leader, Muhammad Hussain.

Hussain's team claims to have created a corrugated array comprising thin, rigid silicon segments using so-called interdigitated back contact solar cells. The segments are interconnected by screen-printed aluminum contacts. These contacts are positioned at the rear to optimise light absorption at the front of the solar cell and facilitate any modifications of the active silicon material. The array can apparently bend and adopt various configurations without cracking or losing its power conversion efficiency.

Starting from large-area crystalline silicon solar cells, the team etched a small portion of the cells into 140-micrometer-thick strips, while keeping the thickness of the remaining portion above 240 micrometers. "This allowed us to lower the bending radius of the cell to 140 micrometers, while retaining the efficiency of the bulk (18%), record achievements for both silicon solar cell efficiency and bendability," explains lead author, Rabab Bahabry.

According to the team, they were able to show that a series of five corrugated solar cells lit up multicolored light-emitting diodes. They also wrapped the cells around a glass mug, which they claim powered a miniature humidity detection system placed on a plant leaf. When exposed to light from a desk lamp and humid conditions, the system apparently turned on an LED and sent a notification to a smartphone.

The team aim to explore the ways they can exploit these corrugated solar cells, which Hussain believes can be deployed in the most complex topologies. "Our approach is suitable for the Internet of Things and can meet a wide application spectrum," he concludes.

Author
Bethan Grylls

Comment on this article


This material is protected by MA Business copyright See Terms and Conditions. One-off usage is permitted but bulk copying is not. For multiple copies contact the sales team.

What you think about this article:


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Intelligent Audio

As more and more consumers look to film their experiences and share short-form ...

Mobile 3D sensing

VCSEL technology encourages progress in biometric solutions such as mobile 3D ...

Innovation unbound

Earlier this month the Consumer Electronics Show (CES) took place in Las Vegas, ...

Gold-plated posts

Responding to a growing demand from high-end audio and precision ...

Best-in-class EMI

Diodes has announced the availability of the AP63200, AP63201, AP63203 and ...

Dual-Radio dev kit

By supporting concurrent communication over Bluetooth Low Energy (BLE) and ...

Smart Home Expo

The Smart Home Expo, which focuses on the future of smart technologies, ...

Get to market faster

A quick look at using Vicor's PFM and AIM in VIA packaging for your AC to Point ...

A racing certainty

AI has shaken the automotive industry to its core, inspiring a revolution. ...

Storm clouds gather

The latest quarterly report from the EEF, the manufacturers’ organisation, ...

Piezoelectric haptics

Boréas Technologies’ CEO, Simon Chaput, talks to Neil Tyler about the company’s ...

Teach them to fish

Last year was dubbed the “worst ever” by the Online Trust Alliance for data ...