09 July 2012

Ferroelectric research milestone could pave way for next gen electronics

US Researchers have developed a technique to reveal unprecedented detail about the atomic structure and behaviour of ferroelectric materials, which are uniquely equipped to store digital information. They claim the research could help usher in a new generation of advanced electronics.

The scientists, from Brookhaven National Laboratory, used a technique called electron holography to capture images of the electric fields created by the materials' atomic displacement. By applying different levels of electricity and adjusting the temperature of the samples, they demonstrated a method for identifying and describing the behaviour and stability of ferroelectrics at the smallest ever scale.

"This kind of detail is just amazing — for the first time ever we can actually see the positions of atoms and link them to local ferroelectricity in nanoparticles," commented Brookhaven physicist Yimei Zhu. "This kind of fundamental insight is not only a technical milestone, but it also opens up new engineering possibilities."

Current magnetic memory devices write information into ferromagnetic materials by flipping the intrinsic dipole moment to correspond with the 1 or 0 of a computer's binary code. In the ferroelectric model of data storage, applying an electric field toggles between that material's two electric states, which translates into code. When scaled up similarly to ferromagnetics, that process can manifest on a computer as the writing or reading of digital information.

"Ferroelectric materials can retain information on a much smaller scale and with higher density than ferromagnetics," Zhu added. "We're looking at moving from micrometres down to nanometres. And that's what's really exciting, because we now know that on the nanoscale each particle can become its own bit of information."

The study revealed that the electric polarity could remain stable for individual ferroelectric materials, meaning that each nanoparticle can be used as a data bit. But because of their fringing fields, ferroelectrics need five nanometres space to effectively operate. Otherwise, once scaled up for computer storage, they can't keep code intact and the information becomes garbled and corrupted.

The team says that understanding the atomic scale properties revealed in this study will help guide the implementation of these particles.

"Properly used, ferroelectrics could ramp up memory density and store an unparalleled multiple terabytes of information on just one square inch of electronics," concluded Brookhaven physicist Myung-Geun Han. "This brings us closer to engineering such devices."

Author
Simon Fogg

Supporting Information

Websites
http://www.bnl.gov/world/

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

Do you have any comments about this article?


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Toshiba starts 15nm flash

Toshiba is to commence 15nm NAND flash production at the end of the month at ...

£2.75m for feasibility studies

The Technology Strategy Board, Invest Northern Ireland and Highlands and ...

Amp works at 50% efficiency

Researchers from the Universities of Bristol and Cardiff have created an ...

Down to the wire

Once the plain old telephone service, the role of the telephone wire continues ...

Within touching distance

Graphene is starting to filter onto the market. HEAD claims its tennis racquets ...

Boosting processing power

Micron Technology appeared at the 2013 Supercomputing conference, where it ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

Test and repair solution

Many large SoC designs today incorporate several third party IP cores that ...

EEPROM device for DDR4

Microchip is now shipping a 4Kb I2C serial presence detect EEPROM device, ...

Processors part with ECC

Toshiba Electronics has expanded its range of 24nm BENAND single level cell ...

Serial EEPROM devices

Microchip's new family of serial EEPROM devices come with a unique, ...

BEEAs 2013

9th October 2014, 8 Northumberland, London

Self-destructing electronics

Researchers at Iowa State University have created transient electronics that ...

MEMS switch for 'true 4G'

General Electric has created a 3GHz RF MEMS switch that can handle up to 5kW of ...

Smart fabrics developed at NPL

NPL has developed a new method to produce conductive textiles. The technique ...

Electronic charge to 800mph

Breaking the land speed record would require a very special blend of latest ...

Flash drives semi technologies

Demand for NAND flash is said to be growing at 45% per year, driven mainly by ...

Flash storage vs. disk drives

The question on everybody's lips within the computer memory industry is whether ...

Nathan Hill, director, NGI

Research into graphene won Andre Geim and Kostya Novoselov the Nobel prize in ...

Brent Hudson, Sagentia

Sagentia's ceo tells Graham Pitcher how the consulting company is anticipating ...

Prof Donal Bradley, Imperial

Graham Pitcher talks to a researcher who was 'there at the start' of the ...