13 August 2012

Electronic fingertip enhances surgeons’ sense of touch

Advanced surgical gloves that mimic the intricate properties of the human fingertip could soon be on the way thanks to researchers in the US.

A consortium from the University of Illinois at Urbana-Champaign, Northwestern University and Dalian University of Technology has developed a wearable electronic fingertip capable of responding with high precision to the stresses and strains associated with touch and finger movement.

The device consists of ultra thin, stretchable, silicon based electronics and soft sensors, and could be a step towards the creation of surgical gloves for use in medical procedures such as local ablations and ultrasound scans. It works by giving the wearer electrotactile stimulation – a tingling sensation caused by a small voltage applied to the skin. The size of the voltage is controlled by the sensor and varies depending on the properties of the object being touched.

"Imagine the ability to sense the electrical properties of tissue, and then locally remove that tissue, precisely by local ablation, all via the fingertips using smart surgical gloves," said Professor John Rogers of the University of Illinois at Urbana-Champaign. "Alternatively, or perhaps in addition, ultrasound imaging could be possible."

The researchers suggest that the new technology could open up possibilities for surgical robots that can interact, in a soft contacting mode, with their surroundings through touch. The electronic circuit on the 'skin' is made of patterns of gold conductive lines and ultra thin sheets of silicon, integrated onto a flexible polymer called polyimide. The sheet is then etched into an open mesh geometry and transferred to a thin sheet of silicone rubber moulded into the precise shape of a finger.

This electronic 'skin', or finger cuff, is designed to measure the stresses and strains at the fingertip by measuring the change in capacitance of pairs of microelectrodes in the circuit. Applied forces decrease the spacing in the skin which, in turn, increases the capacitance. According to the researchers, the fingertip device could also be fitted with sensors for measuring motion and temperature, with small scale heaters as actuators for ablation and other related operations

The researchers believe that because the device exploits materials and fabrication techniques adopted from the established semiconductor industry, the processes can be scaled for realistic use at reasonable cost. They now intend to create a 'skin' for integration on other parts of the body, such as the heart. In this case, a device would envelop the entire 3d surface of the heart, like a sock, to provide various sensing and actuating functions, providing advanced surgical and diagnostic devices relevant to cardiac arrhythmias.

They are also looking at creating materials and schemes to provide the device with wireless data and power.

Author
Laura Hopperton

Supporting Information

Companies
Northwestern University
University of Illinois

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.

Do you have any comments about this article?


Add your comments

Name
 
Email
 
Comments
 

Your comments/feedback may be edited prior to publishing. Not all entries will be published.
Please view our Terms and Conditions before leaving a comment.

Related Articles

Toshiba starts 15nm flash

Toshiba is to commence 15nm NAND flash production at the end of the month at ...

£2.75m for feasibility studies

The Technology Strategy Board, Invest Northern Ireland and Highlands and ...

Amp works at 50% efficiency

Researchers from the Universities of Bristol and Cardiff have created an ...

Down to the wire

Once the plain old telephone service, the role of the telephone wire continues ...

Smart pump for the heart

Around 160,000 people in the EU require heart transplants every year. About 600 ...

Wearable electronics

Problems with the heart can be relatively common but, because they can present ...

NI Trend Watch 2014

This report from National Instruments summarises the latest trends in the ...

Using Linux in medical devices

This whitepaper explores the issues that software developers and medical device ...

Capactive sensing

This whitepaper looks at a number of capacitive sensing applications to ...

High CV X5R MLCC series

AVX has added new capacitance values to its high CV X5R MLCC series for mobile, ...

Modular power supplies

While engineers are increasingly looking to simplify power design, often by ...

Audio receivers from Molex

A new family of balanced armature audio receivers has been introduced by Molex.

Future World Symposium 2014

29th - 30th April 2014, Twickenham Stadium, London

BEEAs 2013

9th October 2014, 8 Northumberland, London

Engineering Materials Live!

22nd-23rd October 2014, Jaguar Exhibition Hall, Ricoh Arena, Coventry, UK

Self-destructing electronics

Researchers at Iowa State University have created transient electronics that ...

MEMS switch for 'true 4G'

General Electric has created a 3GHz RF MEMS switch that can handle up to 5kW of ...

DLP 0.45 WXGA chipset

Learn all about the features and benefits available to developers with the DLP ...

Electronic charge to 800mph

Breaking the land speed record would require a very special blend of latest ...

Flash drives semi technologies

Demand for NAND flash is said to be growing at 45% per year, driven mainly by ...

Cutting the mustard

In the past ten days, three clients have presented their new designs (an ...

Nathan Hill, director, NGI

Research into graphene won Andre Geim and Kostya Novoselov the Nobel prize in ...

Gregg Lowe, Freescale

Freescale's new ceo tells Graham Pitcher that, while he's not 'dancing' yet, ...

Brent Hudson, Sagentia

Sagentia's ceo tells Graham Pitcher how the consulting company is anticipating ...